Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512890

RESUMO

Skin cancer is one of the most fatal skin lesions, capable of leading to fatality if not detected in its early stages. The characteristics of skin lesions are similar in many of the early stages of skin lesions. The AI in categorizing diverse types of skin lesions significantly contributes to and helps dermatologists to preserve patients' lives. This study introduces a novel approach that capitalizes on the strengths of hybrid systems of Convolutional Neural Network (CNN) models to extract intricate features from dermoscopy images with Random Forest (Rf) and Feed Forward Neural Networks (FFNN) networks, leading to the development of hybrid systems that have superior capabilities early detection of all types of skin lesions. By integrating multiple CNN features, the proposed methods aim to improve the robustness and discriminatory capabilities of the AI system. The dermoscopy images were optimized for the ISIC2019 dataset. Then, the area of the lesions was segmented and isolated from the rest of the image by a Gradient Vector Flow (GVF) algorithm. The first strategy for dermoscopy image analysis for early diagnosis of skin lesions is by the CNN-RF and CNN-FFNN hybrid models. CNN models (DenseNet121, MobileNet, and VGG19) receive a region of interest (skin lesions) and produce highly representative feature maps for each lesion. The second strategy to analyze the area of skin lesions and diagnose their type by means of CNN-RF and CNN-FFNN hybrid models based on the features of the combined CNN models. Hybrid models based on combined CNN features have achieved promising results for diagnosing dermoscopy images of the ISIC 2019 dataset and distinguishing skin cancers from other skin lesions. The Dense-Net121-MobileNet-RF hybrid model achieved an AUC of 95.7%, an accuracy of 97.7%, a precision of 93.65%, a sensitivity of 91.93%, and a specificity of 99.49%.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Dermoscopia/métodos , Detecção Precoce de Câncer , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Dermatopatias/diagnóstico por imagem , Redes Neurais de Computação
2.
Diagnostics (Basel) ; 13(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37685321

RESUMO

Diabetic retinopathy (DR) is a complication of diabetes that damages the delicate blood vessels of the retina and leads to blindness. Ophthalmologists rely on diagnosing the retina by imaging the fundus. The process takes a long time and needs skilled doctors to diagnose and determine the stage of DR. Therefore, automatic techniques using artificial intelligence play an important role in analyzing fundus images for the detection of the stages of DR development. However, diagnosis using artificial intelligence techniques is a difficult task and passes through many stages, and the extraction of representative features is important in reaching satisfactory results. Convolutional Neural Network (CNN) models play an important and distinct role in extracting features with high accuracy. In this study, fundus images were used for the detection of the developmental stages of DR by two proposed methods, each with two systems. The first proposed method uses GoogLeNet with SVM and ResNet-18 with SVM. The second method uses Feed-Forward Neural Networks (FFNN) based on the hybrid features extracted by first using GoogLeNet, Fuzzy color histogram (FCH), Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP); followed by ResNet-18, FCH, GLCM and LBP. All the proposed methods obtained superior results. The FFNN network with hybrid features of ResNet-18, FCH, GLCM, and LBP obtained 99.7% accuracy, 99.6% precision, 99.6% sensitivity, 100% specificity, and 99.86% AUC.

3.
Diagnostics (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238243

RESUMO

Breast cancer is the second most common type of cancer among women, and it can threaten women's lives if it is not diagnosed early. There are many methods for detecting breast cancer, but they cannot distinguish between benign and malignant tumors. Therefore, a biopsy taken from the patient's abnormal tissue is an effective way to distinguish between malignant and benign breast cancer tumors. There are many challenges facing pathologists and experts in diagnosing breast cancer, including the addition of some medical fluids of various colors, the direction of the sample, the small number of doctors and their differing opinions. Thus, artificial intelligence techniques solve these challenges and help clinicians resolve their diagnostic differences. In this study, three techniques, each with three systems, were developed to diagnose multi and binary classes of breast cancer datasets and distinguish between benign and malignant types with 40× and 400× factors. The first technique for diagnosing a breast cancer dataset is using an artificial neural network (ANN) with selected features from VGG-19 and ResNet-18. The second technique for diagnosing breast cancer dataset is by ANN with combined features for VGG-19 and ResNet-18 before and after principal component analysis (PCA). The third technique for analyzing breast cancer dataset is by ANN with hybrid features. The hybrid features are a hybrid between VGG-19 and handcrafted; and a hybrid between ResNet-18 and handcrafted. The handcrafted features are mixed features extracted using Fuzzy color histogram (FCH), local binary pattern (LBP), discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) methods. With the multi classes data set, ANN with the hybrid features of the VGG-19 and handcrafted reached a precision of 95.86%, an accuracy of 97.3%, sensitivity of 96.75%, AUC of 99.37%, and specificity of 99.81% with images at magnification factor 400×. Whereas with the binary classes data set, ANN with the hybrid features of the VGG-19 and handcrafted reached a precision of 99.74%, an accuracy of 99.7%, sensitivity of 100%, AUC of 99.85%, and specificity of 100% with images at a magnification factor 400×.

4.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978774

RESUMO

Lung and colon cancer are among humanity's most common and deadly cancers. In 2020, there were 4.19 million people diagnosed with lung and colon cancer, and more than 2.7 million died worldwide. Some people develop lung and colon cancer simultaneously due to smoking which causes lung cancer, leading to an abnormal diet, which also causes colon cancer. There are many techniques for diagnosing lung and colon cancer, most notably the biopsy technique and its analysis in laboratories. Due to the scarcity of health centers and medical staff, especially in developing countries. Moreover, manual diagnosis takes a long time and is subject to differing opinions of doctors. Thus, artificial intelligence techniques solve these challenges. In this study, three strategies were developed, each with two systems for early diagnosis of histological images of the LC25000 dataset. Histological images have been improved, and the contrast of affected areas has been increased. The GoogLeNet and VGG-19 models of all systems produced high dimensional features, so redundant and unnecessary features were removed to reduce high dimensionality and retain essential features by the PCA method. The first strategy for diagnosing the histological images of the LC25000 dataset by ANN uses crucial features of GoogLeNet and VGG-19 models separately. The second strategy uses ANN with the combined features of GoogLeNet and VGG-19. One system reduced dimensions and combined, while the other combined high features and then reduced high dimensions. The third strategy uses ANN with fusion features of CNN models (GoogLeNet and VGG-19) and handcrafted features. With the fusion features of VGG-19 and handcrafted features, the ANN reached a sensitivity of 99.85%, a precision of 100%, an accuracy of 99.64%, a specificity of 100%, and an AUC of 99.86%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...